## Polynomials use in electronics

Electronics use many polynomials. The definition of resistance, V=IR, is a polynomial relating the resistance from a resistor to the current through it and the potential drop across it.

This is similar, but not the same as, Ohm's law, which is followed by many (but not all) conductors. It states that the relation between voltage drop and current through a resistor is linear when graphed. In other words, resistance in the equation V=IR is constant.

Other polynomials in electronics include the relation of power loss to resistance and voltage drop: P=IV=IR^2. Kirchhoff's junction rule (describing current at junctions) and Kirchhoff's loop rule (describing voltage drop around a closed circuit) are also polynomials.

In the last 30 years, computer scientists have instituted important uses for polynomials. Most of their work involves locating specific targets via coordinate systems and cryptography. Polynomials are also important to travel. According to the website MathMotivation, "Without the Taylor Polynomial or other polynomial approximation, there would be no way for scientific calculators and computers to perform the calculations needed to guide our spaceships and aircraft."

This is similar, but not the same as, Ohm's law, which is followed by many (but not all) conductors. It states that the relation between voltage drop and current through a resistor is linear when graphed. In other words, resistance in the equation V=IR is constant.

Other polynomials in electronics include the relation of power loss to resistance and voltage drop: P=IV=IR^2. Kirchhoff's junction rule (describing current at junctions) and Kirchhoff's loop rule (describing voltage drop around a closed circuit) are also polynomials.

In the last 30 years, computer scientists have instituted important uses for polynomials. Most of their work involves locating specific targets via coordinate systems and cryptography. Polynomials are also important to travel. According to the website MathMotivation, "Without the Taylor Polynomial or other polynomial approximation, there would be no way for scientific calculators and computers to perform the calculations needed to guide our spaceships and aircraft."